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J. Phys.: Condens. Matter 1 (1989) 3131-3134. Printed in the UK 

LETTER TO THE EDITOR 

Density functional theory of freezing with a 
self-consistent effective liquid 

Marc Baus 
FacultC des Sciences (Association Euratom-Etat Belge), CP 231, 
UniversitC Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium 

Received 15 March 1989 

Abstract. The effective liquid, used in a recent density functional theory of freezing to 
describe the direct correlations of the solid approximately, is given a self-consistent definition 
that allows us to make contact with the so-called weighted density approximation used by 
other authors. The uniform limit is recovered without approximation. 

In traditional equilibrium statistical mechanics the thermodynamic properties are usually 
related directly to the system’s Hamiltonian via the partition function. During the past 
decade, an alternative approach, known as the density functional theory (DFT) (see 
Evans 1979), has been widely used, for example to study non-uniform equilibrium 
phases and/or interfaces. In this approach the passage from the Hamiltonian to the 
thermodynamic properties is taken in two steps. Firstly, the thermodynamic properties 
are expressed in terms of the direct correlation functions (DCF), viewed as functionals of 
the non-uniform one-particle density p(r) .  Secondly, the DCF are related to the ordinary 
correlation functions and to the Hamiltonian via some integral equation method. In 
practice, each step will involve specific approximations. In recent years, various forms 
of approximate DFT have been formulated that apparently bear little relation one to 
another (see Baus 1987). It is the purpose of this Letter to indicate the formal relations 
between some of these theories. For concreteness, we will use freezing terminology 
where the non-uniform state represents the ‘solid’ and the uniform state the ‘liquid’, 
although any other situation where one tries to describe approximately a non-uniform 
state in terms of a known uniform one could do as well. 

The total (Helmholtz) free energy, F,  of the solid can be written as the sum of three 
terms, F = Fid + Fe,, + Fe,-the ideal gas term, Fid, the contribution of the external field 
(which fixes the boundary conditions for p ( r ) ) ,  Fe,,, and the excess term, Fe,, originating 
from the particle interactions. In the DFT these quantities are viewed as functionals of 
p(r) ,  e.g. F = F [ p ] .  Whereas Fid[p] and F,,,[p] are known explicitly, -/3Fe,[p] = c , [ p ]  
(with /3 = l / k B T  the inverse temperature) is known only to be a generating functional 
of the various DCF, c , [ p ] ,  which can be obtained by successive functional differentiation, 
c , + ~  = Gc,/Sp(r) (see Evans 1979). 
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Integrating the general result 

(1) 
a - a A  cn(r1, . . . > rn;  PI) = J- drn+l c n + 1  ( r l ,  * . . 3  rn+l ;  [ A ~ I )  p(rn+l) 

with respect to the ‘charging’ parameter A and observing that cn[O] = 0, one obtains the 
exact relations 

etc. Notice that in most of the original papers (see, e.g., Baus 1987) only relative excess 
free energies have been considered-in which case the charging process starts from some 
given reference state-but for the present discussion equations (2)  are more convenient 
since they allow us to consider just one state at a time. Let us also introduce the 
dimensionless quantity, (P /p)  f[p], wheref = F/Vis the free energy per unit volume V, 
f/p the free energy per particle and 

p = -  drp ( r )  
V ‘ I  

the average density. If, for later convenience, we rewrite (2a) as 

~ e x [ p ~ =  J - d r p ( r ) ~ ( r ;  [PI) 

with, from (2), 

PV(r; [PI) = - J - I  dA c1 (r; [APl) 

P W ;  [PI) = - J- dr’  lo1 dA IoA 
(3a) 

(3b) 

0 

c2(r, r’; [A’Pl) p(r’> 

then q( r ;  [ p ] )  is seen to be a local excess free energy per particle, in contrast to the true 
excess freeenergy per particle,fex[p]/p. For auniformliquid (indicated by thesuperscript 
1) we have from (2) and (3)  

where the DCF are now translationally invariant functions, while the charging operations 
reduce to density integrations over the uniform density of the liquid, p’(r) = p ,  the 
density functionals degenerating into ordinary functions. 

The central idea behind some of the approximate DFT is to replace the unknown DCF 
of the solid by the better known DCF of the uniform liquid, but evaluated at some as yet 
undetermined density-the density of the liquid whose correlations ‘effectively’ describe 
those of the solid. The approximate theory will describe thus a solid with liquid-like 
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correlations or, alternatively, an effective liquid with a solid-like density. The resulting 
approximation, cz(r,  r ’ ;  [Ap]) = c\(lr - r’l; A@), where p is the density of the effective 
liquid, cannot hold as such because the translation-rotation invariance of the liquid is 
always partially broken in the solid, but it may be meaningful to use it in one of the 
integrated expressions (2) and (3). Introducing this approximation (superscript appr) in 
(2b)  or (3b) we obtain 

( 5 7 )  

where the DCF of the liquid, ck(lr1; p), is assumed to be known. To close the above 
approximation, equations ( 5 ) ,  a defining relation for the effective density p has still to 
be given. There is clearly more than one way to do this. In our earlier theory (Baus and 
Colot 1985) this relation was taken from an extraneous condition by scaling the structure 
factor of the effective liquid to the periodicity of the solid. In order to make contact with 
some of the other approximate DFT we now determine the effective liquid p self- 
consistently. In a first version, closely related to the theory of Tarazona (1984,1985) and 
of Curtin and Ashcroft (1985, 1986), we use a self-consistency relation for the local 
excess free energy per particle vaPP‘( r ;  [ p ] )  = q’ (p ) .  This relation can hold only if p is 
itself a non-uniform (local) function, p = p(r) .  On using (4b) and (5b), this self-con- 
sistency relation becomes 

p 1 d r ”  Io’ dA Io’ dA’ ci(Ir”1; A’p) = 1 dr’  p ( r ’ )  I,’ dA Io’ dA‘ c:(lr - r’l; A’p) (6a) 

which can also be rewritten in terms of a ‘weighted’ density: 
r 

p(r)  = J dr‘  p(r’)w(ir - r’l; p ( r ) )  

with a weighting function w given by (6a) as 

1 w(1r - r’l; p) = (Io1 dA dA’ c:(lr - r’l; A’p) 

where it is understood that ,6 = p(r) .  Alternatively, one can use a strictly uniform 
effective density, p, when the latter is defined from the same self-consistency relation 
but formulated in terms of the true excess free energy per particle, 
(P/p)f,”XpP‘[p] = (P/p) f&(p) ,  which on using (4b) and ( 5 )  leads to 

(7) 1 -’ p = (1 d r 1  dr ’  w(1r - r’l; p)p( r )p ( r ’ ) )  (1 dr”p(r”)  

where w(lr1; p) is still given by (6c). Notice that both relations (i.e. equations (6b) and 
(7)) define p(r)  and only implicitly. They are relations for self-consistency between 
the solid and the effective liquid. In the uniform limit, p( r )  + p ,  we have in both cases, 
p+ p ,  so no approximation whatsoever is involved in this limit when the exact c: is 
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used. It is thus not necessary to impose the uniform limit as a supplementary condition 
on w as was done in the theories of Tarazona (1985) and of Curtin and Ashcroft (1985). 
If the solution of (6b) can be obtained from a virial expansion, as assumed by Tarazona 
(1985), then we obtain in lowest-order from (6c) 

4 4  0) =m (1 d m l ) )  -l (8) 

wheref(lr1) = -1 + exp - pV(Ir1) is the Mayer function. When (8) is used in (6b) or in 
(7) we recover exactly the results of, respectively, Tarazona (1984) and of Stoessel and 
Wolynes (1986), and both of these sets of results were found to be of value in studies of, 
for example, the freezing of hard spheres. Notice, finally, that in a recent study of the 
triplet correlations of a uniform liquid, Denton and Ashcroft (1989) have proposed a 
weighting function similar to (6c) but without the density integrals which, as seen from 
(2b), are nevertheless essential for reproducing the exact free energy of the liquid in the 
uniform limit. 
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